Heckman, Kostant, and Steinberg formulas for symplectic manifolds

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automorphism Sheaves, Spectral Covers, and the Kostant and Steinberg Sections

Throughout this paper, G denotes a simple and simply connected algebraic group over C of rank r and H is a Cartan subgroup, with Lie algebras g = LieG and h = LieH. Let R be the root system of the pair (G,H), W the Weyl group, and Λ ⊆ h the coroot lattice. Fix once and for all a positive Weyl chamber, i.e. a set of simple roots ∆. The geometric invariant theory quotient of g by the adjoint acti...

متن کامل

Kostant Homology Formulas for Oscillator Modules of Lie Superalgebras

We provide a systematic approach to obtain formulas for characters and Kostant u-homology groups of the oscillator modules of the finite dimensional general linear and ortho-symplectic superalgebras, via Howe dualities for infinite dimensional Lie algebras. Specializing these Lie superalgebras to Lie algebras, we recover, in a new way, formulas for Kostant homology groups of unitarizable highes...

متن کامل

On the Hochschild–kostant–rosenberg Map for Graded Manifolds

We show that the Hochschild–Kostant–Rosenberg map from the space of multivector fields on a graded manifold N (endowed with a Berezinian volume) to the cohomology of the algebra of multidifferential operators on N (as a subalgebra of the Hochschild complex of C∞(N)) is an isomorphism of Batalin–Vilkovisky algebras. These results generalize to differential graded manifolds.

متن کامل

Symplectic Groupoids and Poisson Manifolds

0. Introduction. A symplectic groupoid is a manifold T with a partially defined multiplication (satisfying certain axioms) and a compatible symplectic structure. The identity elements in T turn out to form a Poisson manifold To? and the correspondence between symplectic groupoids and Poisson manifolds is a natural extension of the one between Lie groups and Lie algebras. As with Lie groups, und...

متن کامل

SYMPLECTIC TOPOLOGY OF b-SYMPLECTIC MANIFOLDS

A Poisson manifold (M2n, π) is b-symplectic if ∧n π is transverse to the zero section. In this paper we apply techniques of Symplectic Topology to address global questions pertaining to b-symplectic manifolds. The main results provide constructions of: b-symplectic submanifolds à la Donaldson, b-symplectic structures on open manifolds by Gromov’s h-principle, and of b-symplectic manifolds with ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Mathematics

سال: 1990

ISSN: 0001-8708

DOI: 10.1016/0001-8708(90)90087-4